Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils.

نویسندگان

  • Matthew Allen
  • Pravesh K Patel
  • Andrew Mackinnon
  • Dwight Price
  • Scott Wilks
  • Edward Morse
چکیده

Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10(20) W/cm2 producing proton beams with a total yield of approximately 10(11) and maximum proton energy of >9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination from the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses.

The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W  cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30  MeV/nucleon); in particular, carbon ion energi...

متن کامل

Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to t...

متن کامل

Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses.

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil th...

متن کامل

Ion Acceleration driven by High-Intensity Laser Pulses

Within the framework of this thesis the ion acceleration from foils irradiated by high-intensity laser pulses was studied. The application of such laser accelerated ion beams could reach from compact fast-ion injectors for conventional particle accelerators over fast ignition for inertial confinement fusion to oncology and radiotherapy with ion beams. Proton imaging of laser produced plasmas is...

متن کامل

Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses.

A stable relativistic ion acceleration regime for thin foils irradiated by circularly polarized laser pulses is suggested. In this regime, the "light-sail" stage of radiation pressure acceleration for ions is smoothly connected with the initial relativistic "hole-boring" stage, and a defined relationship between laser intensity I0, foil density n{0}, and thickness l{0} should be satisfied. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 93 26 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004